Swing-phase detection of locomotive mode transitions for smooth multi-functional robotic lower-limb prosthesis control

Author:

Haque Md Rejwanul,Islam Md Rafi,Sazonov Edward,Shen Xiangrong

Abstract

Robotic lower-limb prostheses, with their actively powered joints, may significantly improve amputee users’ mobility and enable them to obtain healthy-like gait in various modes of locomotion in daily life. However, timely recognition of the amputee users’ locomotive mode and mode transition still remains a major challenge in robotic lower-limb prosthesis control. In the paper, the authors present a new multi-dimensional dynamic time warping (mDTW)-based intent recognizer to provide high-accuracy recognition of the locomotion mode/mode transition sufficiently early in the swing phase, such that the prosthesis’ joint-level motion controller can operate in the correct locomotive mode and assist the user to complete the desired (and often power-demanding) motion in the stance phase. To support the intent recognizer development, the authors conducted a multi-modal gait data collection study to obtain the related sensor signal data in various modes of locomotion. The collected data were then segmented into individual cycles, generating the templates used in the mDTW classifier. Considering the large number of sensor signals available, we conducted feature selection to identify the most useful sensor signals as the input to the mDTW classifier. We also augmented the standard mDTW algorithm with a voting mechanism to make full use of the data generated from the multiple subjects. To validate the proposed intent recognizer, we characterized its performance using the data cumulated at different percentages of progression into the gait cycle (starting from the beginning of the swing phase). It was shown that the mDTW classifier was able to recognize three locomotive mode/mode transitions (walking, walking to stair climbing, and walking to stair descending) with 99.08% accuracy at 30% progression into the gait cycle, well before the stance phase starts. With its high performance, low computational load, and easy personalization (through individual template generation), the proposed mDTW intent recognizer may become a highly useful building block of a prosthesis control system to facilitate the robotic prostheses’ real-world use among lower-limb amputees.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3