Modeling and Learning Constraints for Creative Tool Use

Author:

Fitzgerald Tesca,Goel Ashok,Thomaz Andrea

Abstract

Improvisation is a hallmark of human creativity and serves a functional purpose in completing everyday tasks with novel resources. This is particularly exhibited in tool-using tasks: When the expected tool for a task is unavailable, humans often are able to replace the expected tool with an atypical one. As robots become more commonplace in human society, we will also expect them to become more skilled at using tools in order to accommodate unexpected variations of tool-using tasks. In order for robots to creatively adapt their use of tools to task variations in a manner similar to humans, they must identify tools that fulfill a set of task constraints that are essential to completing the task successfully yet are initially unknown to the robot. In this paper, we present a high-level process for tool improvisation (tool identification, evaluation, and adaptation), highlight the importance of tooltips in considering tool-task pairings, and describe a method of learning by correction in which the robot learns the constraints from feedback from a human teacher. We demonstrate the efficacy of the learning by correction method for both within-task and across-task transfer on a physical robot.

Funder

Office of Naval Research

International Business Machines Corporation

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference56 articles.

1. Using Structural Bootstrapping for Object Substitution in Robotic Executions of Human-like Manipulation Tasks;Agostini,2015

2. Keyframe-based Learning from Demonstration;Akgun;Int. J. Soc. Robot.,2012

3. A Survey of Robot Learning from Demonstration;Argall;Robot. Auton. Syst.,2009

4. Tactile Guidance for Policy Refinement and Reuse;Argall,2010

5. Learning from Physical Human Corrections, One Feature at a Time;Bajcsy,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3