Assessment of movement disorders using wearable sensors during upper limb tasks: A scoping review

Author:

Vanmechelen Inti,Haberfehlner Helga,De Vleeschhauwer Joni,Van Wonterghem Ellen,Feys Hilde,Desloovere Kaat,Aerts Jean-Marie,Monbaliu Elegast

Abstract

Background:Studies aiming to objectively quantify movement disorders during upper limb tasks using wearable sensors have recently increased, but there is a wide variety in described measurement and analyzing methods, hampering standardization of methods in research and clinics. Therefore, the primary objective of this review was to provide an overview of sensor set-up and type, included tasks, sensor features and methods used to quantify movement disorders during upper limb tasks in multiple pathological populations. The secondary objective was to identify the most sensitive sensor features for the detection and quantification of movement disorders on the one hand and to describe the clinical application of the proposed methods on the other hand.Methods:A literature search using Scopus, Web of Science, and PubMed was performed. Articles needed to meet following criteria: 1) participants were adults/children with a neurological disease, 2) (at least) one sensor was placed on the upper limb for evaluation of movement disorders during upper limb tasks, 3) comparisons between: groups with/without movement disorders, sensor features before/after intervention, or sensor features with a clinical scale for assessment of the movement disorder. 4) Outcome measures included sensor features from acceleration/angular velocity signals.Results:A total of 101 articles were included, of which 56 researched Parkinson’s Disease. Wrist(s), hand(s) and index finger(s) were the most popular sensor locations. Most frequent tasks were: finger tapping, wrist pro/supination, keeping the arms extended in front of the body and finger-to-nose. Most frequently calculated sensor features were mean, standard deviation, root-mean-square, ranges, skewness, kurtosis/entropy of acceleration and/or angular velocity, in combination with dominant frequencies/power of acceleration signals. Examples of clinical applications were automatization of a clinical scale or discrimination between a patient/control group or different patient groups.Conclusion:Current overview can support clinicians and researchers in selecting the most sensitive pathology-dependent sensor features and methodologies for detection and quantification of upper limb movement disorders and objective evaluations of treatment effects. Insights from Parkinson’s Disease studies can accelerate the development of wearable sensors protocols in the remaining pathologies, provided that there is sufficient attention for the standardisation of protocols, tasks, feasibility and data analysis methods.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3