Interactively learning behavior trees from imperfect human demonstrations

Author:

Scherf Lisa,Schmidt Aljoscha,Pal Suman,Koert Dorothea

Abstract

Introduction:In Interactive Task Learning (ITL), an agent learns a new task through natural interaction with a human instructor. Behavior Trees (BTs) offer a reactive, modular, and interpretable way of encoding task descriptions but have not yet been applied a lot in robotic ITL settings. Most existing approaches that learn a BT from human demonstrations require the user to specify each action step-by-step or do not allow for adapting a learned BT without the need to repeat the entire teaching process from scratch.Method:We propose a new framework to directly learn a BT from only a few human task demonstrations recorded as RGB-D video streams. We automatically extract continuous pre- and post-conditions for BT action nodes from visual features and use a Backchaining approach to build a reactive BT. In a user study on how non-experts provide and vary demonstrations, we identify three common failure cases of an BT learned from potentially imperfect initial human demonstrations. We offer a way to interactively resolve these failure cases by refining the existing BT through interaction with a user over a web-interface. Specifically, failure cases or unknown states are detected automatically during the execution of a learned BT and the initial BT is adjusted or extended according to the provided user input.Evaluation and results:We evaluate our approach on a robotic trash disposal task with 20 human participants and demonstrate that our method is capable of learning reactive BTs from only a few human demonstrations and interactively resolving possible failure cases at runtime.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference38 articles.

1. Learning manipulation actions from a few demonstrations;Abdo,2013

2. Autonomous acquisition of behavior trees for robot control;Banerjee,2018

3. How behavior trees modularize hybrid control systems and generalize sequential behavior compositions, the subsumption architecture, and decision trees;Colledanchise;IEEE Trans. robotics,2016

4. Behavior Trees in Robotics and AI

5. Learning of behavior trees for autonomous agents;Colledanchise;IEEE Trans. Games,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CoBT: Collaborative Programming of Behaviour Trees from One Demonstration for Robot Manipulation;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Learning Action Conditions for Automatic Behavior Tree Generation from Human Demonstrations;Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3