Designing Expandable-Structure Robots for Human-Robot Interaction

Author:

Hedayati Hooman,Suzuki Ryo,Rees Wyatt,Leithinger Daniel,Szafir Daniel

Abstract

In this paper, we survey the emerging design space of expandable structures in robotics, with a focus on how such structures may improve human-robot interactions. We detail various implementation considerations for researchers seeking to integrate such structures in their own work and describe how expandable structures may lead to novel forms of interaction for a variety of different robots and applications, including structures that enable robots to alter their form to augment or gain entirely new capabilities, such as enhancing manipulation or navigation, structures that improve robot safety, structures that enable new forms of communication, and structures for robot swarms that enable the swarm to change shape both individually and collectively. To illustrate how these considerations may be operationalized, we also present three case studies from our own research in expandable structure robots, sharing our design process and our findings regarding how such structures enable robots to produce novel behaviors that may capture human attention, convey information, mimic emotion, and provide new types of dynamic affordances.

Funder

National Aeronautics and Space Administration

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference140 articles.

1. Visuo-haptic Illusions for Improving the Perceived Performance of Shape Displays;Abtahi,2018

2. Nonverbal Communication in Socially Assistive Human-Robot Interaction;Admoni;AI Matters,2016

3. Grand Challenges in Shape-Changing Interface Research;Alexander,2018

4. Designing Effective Gaze Mechanisms for Virtual Agents;Andrist,2012

5. Conversational Gaze Aversion for Humanlike Robots;Andrist,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3