A robot localization proposal for the RobotAtFactory 4.0: A novel robotics competition within the Industry 4.0 concept

Author:

Braun João,Júnior Alexandre O.,Berger Guido,Pinto Vítor H.,Soares Inês N.,Pereira Ana I.,Lima José,Costa Paulo

Abstract

Robotic competitions are an excellent way to promote innovative solutions for the current industries’ challenges and entrepreneurial spirit, acquire technical and transversal skills through active teaching, and promote this area to the public. In other words, since robotics is a multidisciplinary field, its competitions address several knowledge topics, especially in the STEM (Science, Technology, Engineering, and Mathematics) category, that are shared among the students and researchers, driving further technology and science. A new competition encompassed in the Portuguese Robotics Open was created according to the Industry 4.0 concept in the production chain. In this competition, RobotAtFactory 4.0, a shop floor, is used to mimic a fully automated industrial logistics warehouse and the challenges it brings. Autonomous Mobile Robots (AMRs) must be used to operate without supervision and perform the tasks that the warehouse requests. There are different types of boxes which dictate their partial and definitive destinations. In this reasoning, AMRs should identify each and transport them to their destinations. This paper describes an approach to the indoor localization system for the competition based on the Extended Kalman Filter (EKF) and ArUco markers. Different innovation methods for the obtained observations were tested and compared in the EKF. A real robot was designed and assembled to act as a test bed for the localization system’s validation. Thus, the approach was validated in the real scenario using a factory floor with the official specifications provided by the competition organization.

Funder

Fundação para a Ciência e a Tecnologia

“la Caixa” Foundation

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3