Implementing social and affective touch to enhance user experience in human-robot interaction

Author:

Cansev M. Ege,Miller Alexandra J.,Brown Jeremy D.,Beckerle Philipp

Abstract

In this paper, we discuss the potential contribution of affective touch to the user experience and robot performance in human-robot interaction, with an in-depth look into upper-limb prosthesis use as a well-suited example. Research on providing haptic feedback in human-robot interaction has worked to relay discriminative information during functional activities of daily living, like grasping a cup of tea. However, this approach neglects to recognize the affective information our bodies give and receive during social activities of daily living, like shaking hands. The discussion covers the emotional dimensions of affective touch and its role in conveying distinct emotions. In this work, we provide a human needs-centered approach to human-robot interaction design and argue for an equal emphasis to be placed on providing affective haptic feedback channels to meet the social tactile needs and interactions of human agents. We suggest incorporating affective touch to enhance user experience when interacting with and through semi-autonomous systems such as prosthetic limbs, particularly in fostering trust. Real-time analysis of trust as a dynamic phenomenon can pave the way towards adaptive shared autonomy strategies and consequently enhance the acceptance of prosthetic limbs. Here we highlight certain feasibility considerations, emphasizing practical designs and multi-sensory approaches for the effective implementation of affective touch interfaces.

Publisher

Frontiers Media SA

Reference85 articles.

1. Human c-tactile afferents are tuned to the temperature of a skin-stroking caress;Ackerley;J. Neurosci.,2014

2. A classification model for sensing human trust in machines using eeg and gsr;Akash;ACM Trans. Interact. Intelligent Syst. (TiiS),2018

3. User experience in social human-robot interaction;Alenljung,2019

4. Feel-good robotics: requirements on touch for embodiment in assistive robotics;Beckerle;Front. neurorobotics,2018

5. Restoration of sensory information via bionic hands;Bensmaia;Nat. Biomed. Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3