Combining Self-Organizing and Graph Neural Networks for Modeling Deformable Objects in Robotic Manipulation

Author:

Valencia Angel J.,Payeur Pierre

Abstract

Modeling deformable objects is an important preliminary step for performing robotic manipulation tasks with more autonomy and dexterity. Currently, generalization capabilities in unstructured environments using analytical approaches are limited, mainly due to the lack of adaptation to changes in the object shape and properties. Therefore, this paper proposes the design and implementation of a data-driven approach, which combines machine learning techniques on graphs to estimate and predict the state and transition dynamics of deformable objects with initially undefined shape and material characteristics. The learned object model is trained using RGB-D sensor data and evaluated in terms of its ability to estimate the current state of the object shape, in addition to predicting future states with the goal to plan and support the manipulation actions of a robotic hand.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference34 articles.

1. A multimodal model of object deformation under robotic pushing;Arriola-Rios;IEEE Trans. Cogn. Dev. Syst,2017

2. “Interaction networks for learning about objects, relations and physics,”;Battaglia,2016

3. Trends and challenges in robot manipulation;Billard;Science,2019

4. The OpenCV Library120125 BradskiG. Dr Dobbs J. Softw.Tools252000

5. “Active perception and modeling of deformable surfaces using Gaussian processes and position-based dynamics,”;Caccamo,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3