PAL: A Framework for Physically Assisted Learning Through Design and Exploration With a Haptic Robot Buddy

Author:

Kianzad Soheil,Chen Guanxiong,MacLean Karon E.

Abstract

Robots are an opportunity for interactive and engaging learning activities. In this paper we consider the premise that haptic force feedback delivered through a held robot can enrich learning of science-related concepts by building physical intuition as learners design experiments and physically explore them to solve problems they have posed. Further, we conjecture that combining this rich feedback with pen-and-paper interactions, e.g., to sketch experiments they want to try, could lead to fluid interactions and benefit focus. However, a number of technical barriers interfere with testing this approach, and making it accessible to learners and their teachers. In this paper, we propose a framework for Physically Assisted Learning based on stages of experiential learning which can guide designers in developing and evaluating effective technology, and which directs focus on how haptic feedback could assist with design and explore learning stages. To this end, we demonstrated a possible technical pathway to support the full experience of designing an experiment by drawing a physical system on paper, then interacting with it physically after the system recognizes the sketch, interprets as a model and renders it haptically. Our proposed framework is rooted in theoretical needs and current advances for experiential learning, pen-paper interaction and haptic technology. We further explain how to instantiate the PAL framework using available technologies and discuss a path forward to a larger vision of physically assisted learning.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference105 articles.

1. 26 Experiences of Artifacts;Ackermann;Designing Constructionist Futures: Art, Theor. Pract. Learn. Designs.,2020

2. Visual Haptic Approach Complements Learning Process of Jawi Handwriting Skills;Amin,2013

3. Getting Down to Details: Using Theories of Cognition and Learning to Inform Tangible User Interface Design;Antle;Interacting Comput.,2013

4. Bringing Letters to Life;Asselborn,2018

5. How Does the Degree of Guidance Support Students' Metacognitive and Problem Solving Skills in Educational Robotics?;Atmatzidou;J. Sci. Educ. Technol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3