Human-in-the-loop error detection in an object organization task with a social robot

Author:

Frijns Helena Anna,Hirschmanner Matthias,Sienkiewicz Barbara,Hönig Peter,Indurkhya Bipin,Vincze Markus

Abstract

In human-robot collaboration, failures are bound to occur. A thorough understanding of potential errors is necessary so that robotic system designers can develop systems that remedy failure cases. In this work, we study failures that occur when participants interact with a working system and focus especially on errors in a robotic system’s knowledge base of which the system is not aware. A human interaction partner can be part of the error detection process if they are given insight into the robot’s knowledge and decision-making process. We investigate different communication modalities and the design of shared task representations in a joint human-robot object organization task. We conducted a user study (N = 31) in which the participants showed a Pepper robot how to organize objects, and the robot communicated the learned object configuration to the participants by means of speech, visualization, or a combination of speech and visualization. The multimodal, combined condition was preferred by 23 participants, followed by seven participants preferring the visualization. Based on the interviews, the errors that occurred, and the object configurations generated by the participants, we conclude that participants tend to test the system’s limitations by making the task more complex, which provokes errors. This trial-and-error behavior has a productive purpose and demonstrates that failures occur that arise from the combination of robot capabilities, the user’s understanding and actions, and interaction in the environment. Moreover, it demonstrates that failure can have a productive purpose in establishing better user mental models of the technology.

Funder

Austrian Science Fund

Publisher

Frontiers Media SA

Reference54 articles.

1. Deep ViT features as dense visual descriptors;Amir,2022

2. A human-centric approach to autonomous robot failures;Brooks,2017

3. Teaching people how to teach robots: the effect of instructional materials and dialog design;Cakmak,2014

4. How UGVs physically fail in the field;Carlson;IEEE Trans. Robotics,2005

5. Common ground;Clark,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3