Can a robot laugh with you?: Shared laughter generation for empathetic spoken dialogue

Author:

Inoue Koji,Lala Divesh,Kawahara Tatsuya

Abstract

Spoken dialogue systems must be able to express empathy to achieve natural interaction with human users. However, laughter generation requires a high level of dialogue understanding. Thus, implementing laughter in existing systems, such as in conversational robots, has been challenging. As a first step toward solving this problem, rather than generating laughter from user dialogue, we focus on “shared laughter,” where a user laughs using either solo or speech laughs (initial laugh), and the system laughs in turn (response laugh). The proposed system consists of three models: 1) initial laugh detection, 2) shared laughter prediction, and 3) laugh type selection. We trained each model using a human-robot speed dating dialogue corpus. For the first model, a recurrent neural network was applied, and the detection performance achieved an F1 score of 82.6%. The second model used the acoustic and prosodic features of the initial laugh and achieved a prediction accuracy above that of the random prediction. The third model selects the type of system’s response laugh as social or mirthful laugh based on the same features of the initial laugh. We then implemented the full shared laughter generation system in an attentive listening dialogue system and conducted a dialogue listening experiment. The proposed system improved the impression of the dialogue system such as empathy perception compared to a naive baseline without laughter and a reactive system that always responded with only social laughs. We propose that our system can be used for situated robot interaction and also emphasize the need for integrating proper empathetic laughs into conversational robots and agents.

Funder

Ministry of Education, Culture, Sports, Science and Technology

ACT-X

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference47 articles.

1. Improved audio-visual laughter detection via multi-scale multi-resolution image texture features and classifier fusion;Akhtar,2018

2. ColBERT: Using BERT sentence embedding for humor detection;Annamoradnejad;arXiv,2020

3. Laughter classification using 3D convolutional neural networks;Ataollahi,2019

4. On laughter and speech-laugh, based on observations of child-robot interaction;Batliner;arXiv,2019

5. Time for laughter;Bonin;Knowledge-Based Syst.,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3