A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets

Author:

Albee Keenan,Oestreich Charles,Specht Caroline,Terán Espinoza Antonio,Todd Jessica,Hokaj Ian,Lampariello Roberto,Linares Richard

Abstract

Accumulating space debris edges the space domain ever closer to cascading Kessler syndrome, a chain reaction of debris generation that could dramatically inhibit the practical use of space. Meanwhile, a growing number of retired satellites, particularly in higher orbits like geostationary orbit, remain nearly functional except for minor but critical malfunctions or fuel depletion. Servicing these ailing satellites and cleaning up “high-value” space debris remains a formidable challenge, but active interception of these targets with autonomous repair and deorbit spacecraft is inching closer toward reality as shown through a variety of rendezvous demonstration missions. However, some practical challenges are still unsolved and undemonstrated. Devoid of station-keeping ability, space debris and fuel-depleted satellites often enter uncontrolled tumbles on-orbit. In order to perform on-orbit servicing or active debris removal, docking spacecraft (the “Chaser”) must account for the tumbling motion of these targets (the “Target”), which is oftentimes not known a priori. Accounting for the tumbling dynamics of the Target, the Chaser spacecraft must have an algorithmic approach to identifying the state of the Target’s tumble, then use this information to produce useful motion planning and control. Furthermore, careful consideration of the inherent uncertainty of any maneuvers must be accounted for in order to provide guarantees on system performance. This study proposes the complete pipeline of rendezvous with such a Target, starting from a standoff estimation point to a mating point fixed in the rotating Target’s body frame. A novel visual estimation algorithm is applied using a 3D time-of-flight camera to perform remote standoff estimation of the Target’s rotational state and its principal axes of rotation. A novel motion planning algorithm is employed, making use of offline simulation of potential Target tumble types to produce a look-up table that is parsed on-orbit using the estimation data. This nonlinear programming-based algorithm accounts for known Target geometry and important practical constraints such as field of view requirements, producing a motion plan in the Target’s rotating body frame. Meanwhile, an uncertainty characterization method is demonstrated which propagates uncertainty in the Target’s tumble uncertainty to provide disturbance bounds on the motion plan’s reference trajectory in the inertial frame. Finally, this uncertainty bound is provided to a robust tube model predictive controller, which provides tube-based robustness guarantees on the system’s ability to follow the reference trajectory translationally. The combination and interfaces of these methods are shown, and some of the practical implications of their use on a planned demonstration on NASA’s Astrobee free-flyer are additionally discussed. Simulation results of each of the components individually and in a complete case study example of the full pipeline are presented as the study prepares to move toward demonstration on the International Space Station.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference50 articles.

1. A Prediction and Motion-Planning Scheme for Visually Guided Robotic Capturing of Free-Floating Tumbling Objects with Uncertain Dynamics;Aghili;IEEE Trans. Robot.,2012

2. Optimal Control for Robotic Capturing and Passivation of a Tumbling Satellite with Unknown Dynamics;Aghili;AIAA Guidance, Navigation Control. Conf. Exhibit,2008

3. Optimal Trajectories and Robot Control for Detumbling a Non-cooperative Satellite;Aghili;J. Guidance, Control Dyn.,2020

4. Combining Parameter Identification and Trajectory Optimization: Real-Time Planning for Information Gain;Albee,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3