On the dynamics and control of a squirrel locking its head/eyes toward a fixed spot for safe landing while its body is tumbling in air

Author:

Ma Tianqi,Zhang Tao,Ma Ou

Abstract

An arboreal mammal such as a squirrel can amazingly lock its head (and thus eyes) toward a fixed spot for safe landing while its body is tumbling in air after unexpectedly being thrown into air. Such an impressive ability of body motion control of squirrels has been shown in a recent YouTube video, which has amazed public with over 100 million views. In the video, a squirrel attracted to food crawled onto an ejection device and was unknowingly ejected into air by the device. During the resulting projectile flight, the squirrel managed to quickly turn its head (eyes) toward and then keeps staring at the landing spot until it safely landed on feet. Understanding the underline dynamics and how the squirrel does this behavior can inspire robotics researchers to develop bio-inspired control strategies for challenging robotic operations such as hopping/jumping robots operating in an unstructured environment. To study this problem, we implemented a 2D multibody dynamics model, which simulated the dynamic motion behavior of the main body segments of a squirrel in a vertical motion plane. The inevitable physical contact between the body segments is also modeled and simulated. Then, we introduced two motion control methods aiming at locking the body representing the head of the squirrel toward a globally fixed spot while the other body segments of the squirrel were undergoing a general 2D rotation and translation. One of the control methods is a conventional proportional-derivative (PD) controller, and the other is a reinforcement learning (RL)-based controller. Our simulation-based experiment shows that both controllers can achieve the intended control goal, quickly turning and then locking the head toward a globally fixed spot under any feasible initial motion conditions. In comparison, the RL-based method is more robust against random noise in sensor data and also more robust under unexpected initial conditions.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference48 articles.

1. A distributed control model for the air-righting reflex of a cat;Arabyan;Biol. Cybern.,1998

2. Orienting in mid-air through configuration changes to achieve a rolling landing for reducing impact after a fall;Bingham,2014

3. Full control of a quadrotor;Bouabdallah,2007

4. Modeling and control of soft robotic tail based aerial maneuvering (stam) system: Towards agile self-righting with a soft tail;Butt;IEEE),2021

5. Survival of falling robots;Cameron,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3