Engineering custom morpho- and chemotypes of Populus for sustainable production of biofuels, bioproducts, and biomaterials

Author:

Buell C. Robin,Dardick Christopher,Parrott Wayne,Schmitz Robert J.,Shih Patrick M.,Tsai Chung-Jui,Urbanowicz Breeanna

Abstract

Humans have been modifying plant traits for thousands of years, first through selection (i.e., domestication) then modern breeding, and in the last 30 years, through biotechnology. These modifications have resulted in increased yield, more efficient agronomic practices, and enhanced quality traits. Precision knowledge of gene regulation and function through high-resolution single-cell omics technologies, coupled with the ability to engineer plant genomes at the DNA sequence, chromatin accessibility, and gene expression levels, can enable engineering of complex and complementary traits at the biosystem level. Populus spp., the primary genetic model system for woody perennials, are among the fastest growing trees in temperate zones and are important for both carbon sequestration and global carbon cycling. Ample genomic and transcriptomic resources for poplar are available including emerging single-cell omics datasets. To expand use of poplar outside of valorization of woody biomass, chassis with novel morphotypes in which stem branching and tree height are modified can be fabricated thereby leading to trees with altered leaf to wood ratios. These morphotypes can then be engineered into customized chemotypes that produce high value biofuels, bioproducts, and biomaterials not only in specific organs but also in a cell-type-specific manner. For example, the recent discovery of triterpene production in poplar leaf trichomes can be exploited using cell-type specific regulatory sequences to synthesize high value terpenes such as the jet fuel precursor bisabolene specifically in the trichomes. By spatially and temporally controlling expression, not only can pools of abundant precursors be exploited but engineered molecules can be sequestered in discrete cell structures in the leaf. The structural diversity of the hemicellulose xylan is a barrier to fully utilizing lignocellulose in biomaterial production and by leveraging cell-type-specific omics data, cell wall composition can be modified in a tailored and targeted specific manner to generate poplar wood with novel chemical features that are amenable for processing or advanced manufacturing. Precision engineering poplar as a multi-purpose sustainable feedstock highlights how genome engineering can be used to re-imagine a crop species.

Funder

U.S. Department of Energy

Center for Bioenergy Innovation

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3