Ectopic Expression of the Allium cepa 1-SST Gene in Cotton Improves Drought Tolerance and Yield Under Drought Stress in the Field

Author:

Liu RuiNa,Jiao TianQi,Zhang ZeXing,Yao Zhang,Li ZhongQing,Wang Saisai,Xin Hongliang,Li YuXia,Wang AiYing,Zhu JianBo

Abstract

In some plants, sucrose: sucrose 1-fructosyltransferase (1-SST) is the first irreversible key enzyme in fructan biosynthesis. Studies have shown that fructan accumulation enhances abiotic stress tolerance of plants. To investigate the role of 1-SST in drought stress responses, a total of 37 cotton plants expressing a 1-SST gene from Allium cepa were developed by Agrobacterium-mediated transformation. Under drought stress in the field, compared with wild-type, ectopic expression of Ac1-SST in cotton resulted in significantly higher soluble sugars (especially 1-kestose), proline and relative water contents, as well as decreased malondialdehyde content, which contributed to maintaining intracellular osmoregulation and reducing membrane damage. In addition, ectopic expression of Ac1-SST in cotton significantly improved the photosynthesis rate, performance of PSII (including Pn, Fv/Fm, WUE, ΦPSII, and PItotal) and plant growth under drought stress. Furthermore, compared with the wild-type, under the droughted field, the yield loss per square meter of transgenic cotton was reduced by an average of 20.9% over two consecutive years. Our results indicate that the Ac1-SST gene can be used to improve drought tolerance and yield of cotton varieties, and might also be a promising drought-resistant gene for improving other crop varieties.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3