The potential of non-native tree species to provide major ecosystem services in Austrian forests

Author:

Konic Julia,Heiling Carina,Haeler Elena,Chakraborty Debojyoti,Lapin Katharina,Schueler Silvio

Abstract

Forestry is facing an unprecedented challenging time. Due to climate change, major tree species, which until recently fulfilled major ecosystem services, are being lost and it is often unclear if forest conversion with other native or non-native tree species (NNT) are able to maintain or restore the endangered ecosystem services. Using data from the Austrian Forest Inventory, we analysed the current and future (2081-2100, RCP 4.5 and RCP 8.5) productivity of forests, as well as their protective function (avalanches and rockfall). Five different species change scenarios were considered for the replacement of a tree species failing in the future. We used seven native tree species (Picea abies, Abies alba, Pinus sylvestris, Larix decidua, Fagus sylvatica, Quercus robur and Quercus petraea) and nine NNT (Pseudotsuga menziesii, Abies grandis, Thuja plicata, Pinus radiata, Pinus contorta, Robinia pseudoacacia, Quercus rubra, Fraxinus pennsylvanica and Juglans nigra). The results show that no adaptation would lead to a loss of productivity and a decrease in tree species richness. The combined use of native and NNT is more favorable than purely using native species in terms of productivity and tree species richness. The impact of the different species change scenarios can vary greatly between the different environmental zones of Austria (Alpine south, Continental and Pannonian). The Pannonian zone would benefit from the use of NNT in terms of timber production. For the protection against avalanches or rockfall in alpine regions, NNT would not be an advantage, and it is more important if broadleaved or coniferous trees are used. Depending on whether timber production, protective function or tree species richness are considered, different tree species or species change scenarios can be recommended. Especially in protective forests, other aspects are essential compared to commercial forests. Our results provide a basis for forest owners/managers in three European environmental zones to make decisions on a sustainable selection of tree species to plant in the face of climate change.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3