Elevated UV photon fluxes minimally affected cannabinoid concentration in a high-CBD cultivar

Author:

Westmoreland F. Mitchell,Kusuma Paul,Bugbee Bruce

Abstract

Ultraviolet photons (UV) can damage critical biochemical processes. Plants synthesize photo-protective pigments that absorb UV to minimize damage. Cannabinoids absorb UV, so increased UV has the potential to increase cannabinoid synthesis. Studies in the 1980’s provided some evidence for this hypothesis in low-cannabinoid cultivars, but recent studies did not find an increase in cannabinoid synthesis with increasing UV in high-cannabinoid cultivars. These studies used low UV photon fluxes, so we examined the effect of higher UV photon fluxes. We used fluorescent UV lights with 55% UV-B (280 to 314 nm) and 45% UV-A (315 to 399 nm). Treatments began three weeks after the start of short days and continued for five weeks until harvest. Established weighting factors were used to calculate the daily biologically effective UV photon flux (UV-PFDBE; 280 to 399 nm). Daily UV-PFDBE levels were 0, 0.02, 0.05, and 0.11 mol m-2 d-1 with a background daily light integral (DLI) of 30 mol m-2 d-1. This provided a ratio of daily UV-PFDBE to DLI of 41 to 218% of summer sunlight in the field. Cannabinoid concentration was 3 to 13% higher than the control in UV treated plants, but the effect was not statistically significant. Fv/Fm and flower yield were reduced only in the highest UV treatment. These data support recent literature and lead us to conclude that an elevated flux of UV photons is not an effective approach to increase cannabinoid concentration in high-cannabinoid cultivars.

Funder

Utah Agricultural Experiment Station

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3