RoseAP: an analytical platform for gene function of Rosa rugosa

Author:

Da Lingling,Li Jiande,Zhao Fan,Liu Huilin,Shi Pengxia,Shi Shaoming,Zhang Xinxin,Yang Jiaotong,Zhang Hui

Abstract

Rosa rugosa, a perennial shrub belonging to family Rosaceae, is a well-known ornamental plant. Its petals contain an abundance of essential oils and anthocyanins with enormous economic and health benefits when used as edible or cosmetic ingredients. The whole genome of R. rugosa was sequenced in 2021, which provided opportunities and challenges for gene regulation. However, many gene functions remain unknown. Therefore, an analytical platform named RoseAP (http://www.gzybioinformatics.cn/RoseAP/index.php) for the functional analysis of R. rugosa genes was constructed. It improved the gene annotation rate by integrating and analyzing genomic and transcriptomic datasets. First, 38,815 genes, covering 97.76% of the coding genes, were annotated functionally and structurally using a variety of algorithms and rules. Second, a total of 33 transcriptome samples were integrated, including 23 samples from our lab and 10 samples from the SRA database. A co-expression network containing approximately 29,657 positive or negative gene pairs, covering 74.7% of the coding genes, was constructed based on PCC and MR algorithms. Network analysis revealed that the DFR function was closely related to anthocyanin metabolism. It demonstrated the reliability of the network. Several SAUR genes of R. rugosa shared similar expression patterns. RoseAP was used to determine the sequence, structure, functional annotation, expression profile, regulatory network, and functional modules at the transcriptional and protein levels by inputting gene IDs. In addition, auxiliary analytical tools, including BLAST, gene set enrichment, orthologue conversion, gene sequence extraction, gene expression value extraction, and JBrowse, were utilized. Regular updates to RoseAP are expected to facilitate mining of gene function and promote genetic improvement in R. rugosa.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3