Genome-wide identification and comparative analyses of key genes involved in C4 photosynthesis in five main gramineous crops

Author:

Chen Liang,Yang Yang,Zhao Zhangchen,Lu Shan,Lu Qiumei,Cui Chunge,Parry Martin A. J.,Hu Yin-Gang

Abstract

Compared to C3 species, C4 plants showed higher photosynthetic capacity as well as water and nitrogen use efficiency due to the presence of the C4 photosynthetic pathway. Previous studies have shown that all genes required for the C4 photosynthetic pathway exist in the genomes of C3 species and are expressed. In this study, the genes encoding six key C4 photosynthetic pathway enzymes (β-CA, PEPC, ME, MDH, RbcS, and PPDK) in the genomes of five important gramineous crops (C4: maize, foxtail millet, and sorghum; C3: rice and wheat) were systematically identified and compared. Based on sequence characteristics and evolutionary relationships, their C4 functional gene copies were distinguished from non-photosynthetic functional gene copies. Furthermore, multiple sequence alignment revealed important sites affecting the activities of PEPC and RbcS between the C3 and C4 species. Comparisons of expression characteristics confirmed that the expression patterns of non-photosynthetic gene copies were relatively conserved among species, while C4 gene copies in C4 species acquired new tissue expression patterns during evolution. Additionally, multiple sequence features that may affect C4 gene expression and subcellular localization were found in the coding and promoter regions. Our work emphasized the diversity of the evolution of different genes in the C4 photosynthetic pathway and confirmed that the specific high expression in the leaf and appropriate intracellular distribution were the keys to the evolution of C4 photosynthesis. The results of this study will help determine the evolutionary mechanism of the C4 photosynthetic pathway in Gramineae and provide references for the transformation of C4 photosynthetic pathways in wheat, rice, and other major C3 cereal crops.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3