Synchronous Responses of Plant Functional Traits to Nitrogen Deposition From Dominant Species to Functional Groups and Whole Communities in Alpine Grasslands on the Qinghai-Tibetan Plateau

Author:

Li Shuai,Zhao Zhenzhen,Dong Shikui,Shen Hao,Xu Yudan,Xiao Jiannan,Gao Xiaoxia,Wu Shengnan,Stufkens Paul

Abstract

Nitrogen deposition is recognized as one of the major threats to the ecosystem function of alpine grasslands on the Qinghai-Tibetan Plateau (QTP). However, few studies have documented the gradient responses of plant species, functional groups, and communities in alpine grassland ecosystems to various levels of N deposition on the QTP. We applied eight linear mixed-effect models combing acidification, eutrophication, and phosphorus availability to explore if the responses of functional traits (particularly plant height and specific leaf area) of plants from dominant species to functional groups and whole communities in different types of grassland to nitrogen deposition were consistent with the same or different models. We found that the specific leaf area of Stipa capillata, non-forb, and community-weighted mean value in the alpine steppe were synchronous and related to acidification with nitrogen addition; the height of Stipa capillata, non-forb, and community-weighted mean value in the alpine steppe was synchronous and related to acidification, eutrophication, and phosphorus availability with nitrogen addition; the height and specific leaf area of Elymus breviaristatus to functional groups and community-weighted mean value in cultivated grasslands (CGs) were synchronous and related to acidification, eutrophication, and phosphorus availability with nitrogen addition. Most of the responses of functional traits of plants to acidification, eutrophication, and phosphorus availability associated with nitrogen deposition in the alpine steppe and the CG were synchronous, while only the response of the specific leaf area of forb functional groups to eutrophication associated with N deposition in the alpine steppe was asynchronous.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3