Genetic mapping of the LOSS OF PARTHENOGENESIS locus in Pilosella piloselloides and the evolution of apomixis in the Lactuceae

Author:

Bicknell Ross,Gaillard Marion,Catanach Andrew,McGee Robert,Erasmuson Sylvia,Fulton Beatrice,Winefield Christopher

Abstract

Pilosella piloselloides var. praealta (syn. P. praealta; Hieracium praealtum) is a versatile model used to study gametophytic apomixis. In this system apomixis is controlled by three loci: one that controls the avoidance of meiosis (LOA), one that controls the avoidance of fertilization (LOP) and a third that controls autonomous endosperm formation (AutE). Using a unique polyhaploid mapping approach the LOP locus was mapped to a 654 kb genomic interval syntenic to linkage group 8 of Lactuca sativa. Polyhaploids form through the gametophytic action of a dominant determinant at LOP, so the mapped region represents both a functional and a physical domain for LOP in P. piloselloides. Allele sequence divergence (ASD) analysis of the PARTHENOGENESIS (PAR) gene within the LOP locus revealed that dominant PAR alleles in Pilosella remain highly similar across the genus, whilst the recessive alleles are more divergent. A previous report noted that dominant PAR alleles in both Pilosella and Taraxacum are modified by the presence of a class II transposable element (TE) in the promoter of the gene. This observation was confirmed and further extended to the related genus Hieracium. Sufficient differences were noted in the structure and location of the TE elements to conclude that TE insertional events had occurred independently in the three genera. Measures of allele crossover amongst the polyhaploids revealed that P. piloselloides is an autopolyploid species with tetrasomic inheritance. It was also noted that the dominant determinant of LOP in P. piloselloides could transmit via a diploid gamete (pollen or egg) but not via a haploid gamete. Using this information, a model is presented of how gametophytic apomixis may have evolved in several members of the Lactuceae, a tribe of the Asteraceae.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3