Genome wide association studies for acid phosphatase activity at varying phosphorous levels in Brassica juncea L

Author:

Upadhyay Priyanka,Gupta Mehak,Sra Simarjeet Kaur,Sharda Rakesh,Sharma Sanjula,Sardana Virender K.,Akhatar Javed,Kaur Gurpreet

Abstract

Acid phosphatases (Apases) are an important group of enzymes that hydrolyze soil and plant phosphoesters and anhydrides to release Pi (inorganic phosphate) for plant acquisition. Their activity is strongly correlated to the phosphorus use efficiency (PUE) of plants. Indian mustard (Brassica juncea L. Czern & Coss) is a major oilseed crop that also provides protein for the animal feed industry. It exhibits low PUE. Understanding the genetics of PUE and its component traits, especially Apase activity, will help to reduce Pi fertilizer application in the crop. In the present study, we evaluated 280 genotypes of the diversity fixed foundation set of Indian mustard for Apase activity in the root (RApase) and leaf (LApase) tissues at three- low (5µM), normal (250µM) and high (1mM) Pi levels in a hydroponic system. Substantial effects of genotype and Pi level were observed for Apase activity in both tissues of the evaluated lines. Low Pi stress induced higher mean RApase and LApase activities. However, mean LApase activity was relatively more than mean RApase at all three Pi levels. JM06016, IM70 and Kranti were identified as promising genotypes with higher LApase activity and increased R/S at low Pi. Genome-wide association study revealed 10 and 4 genomic regions associated with RApase and LApase, respectively. Annotation of genomic regions in the vicinity of peak associated SNPs allowed prediction of 15 candidates, including genes encoding different family members of the acid phosphatase such as PAP10 (purple acid phosphatase 10), PAP16, PNP (polynucleotide phosphorylase) and AT5G51260 (HAD superfamily gene, subfamily IIIB acid phosphatase) genes. Our studies provide an understanding of molecular mechanism of the Apase response of B. juncea at varying Pi levels. The identified SNPs and candidate genes will support marker-assisted breeding program for improving PUE in Indian mustard. This will redeem the crop with enhanced productivity under restricted Pi reserves and degrading agro-environments.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3