YOLO-VOLO-LS: A Novel Method for Variety Identification of Early Lettuce Seedlings

Author:

Zhang Pan,Li Daoliang

Abstract

Accurate identification of crop varieties is an important aspect of smart agriculture, which is not only essential for the management of later crop differences, but also has a significant effect on unmanned operations in planting scenarios such as facility greenhouses. In this study, five kinds of lettuce under the cultivation conditions of greenhouses were used as the research object, and a classification model of lettuce varieties with multiple growth stages was established. First of all, we used the-state-of-the-art method VOLO-D1 to establish a variety classification model for the 7 growth stages of the entire growth process. The results found that the performance of the lettuce variety classification model in the SP stage needs to be improved, but the classification effect of the model at other stages is close to 100%; Secondly, based on the challenges of the SP stage dataset, we combined the advantages of the target detection mechanism and the target classification mechanism, innovatively proposed a new method of variety identification for the SP stage, called YOLO-VOLO-LS. Finally, we used this method to model and analyze the classification of lettuce varieties in the SP stage. The result shows that the method can achieve excellent results of 95.961, 93.452, 96.059, 96.014, 96.039 in Val-acc, Test-acc, Recall, Precision, F1-score, respectively. Therefore, the method proposed in this study has a certain reference value for the accurate identification of varieties in the early growth stage of crops.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference47 articles.

1. Lemon classification using deep learning.;Alzamily;Int. J. Acad. Pedagog. Res.,2019

2. Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images.;Bhosle;J. Indian Soc. Remote Sens.,2019

3. Deep convolutional neural network based plant species recognition through features of leaf.;Bisen;Multimed. Tools Appl.,2021

4. Deep neural networks and transfer learning for food crop identification in UAV images.;Chew;Drones,2020

5. Floriculture classification using simple neural network and deep learning;Dharwadkar;Proceedings of the RTEICT 2017 – 2nd International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) 2018-Janua,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3