Plant Endophytic Fungus Extract ZNC Improved Potato Immunity, Yield, and Quality

Author:

Cao Juan,Liu Baoyou,Xu Xinning,Zhang Xiaoying,Zhu Changxiang,Li Yang,Ding Xinhua

Abstract

Endophytic fungi play an important role in plant survival and reproduction, but the role of their metabolites in plant growth and immunity, as well as in crop quality formation, is poorly understood. Zhinengcong (ZNC) is a crude ethanol extract from the endophytic fungus Paecilomyces variotii, and previous studies have shown that it can improve the growth and immunity in Arabidopsis thaliana. The aim of the study was to reveal the trade-off balance between plant growth and immunity by evaluating the mechanisms of ZNC on potato growth, yield, and priming immunity against the oomycete Phytophthora infestans indoors and in the field. ZNC maintained a good balance between plant growth and resistance against P. infestans with high activity. It induced the reactive oxygen species (ROS) production, promoted plant growth, yield and quality parameters, enhanced the expression of indoleacetic acid (IAA) related genes, and increased the absorption of nitrogen from the soil. Moreover, the plant endophytic fungus extract ZNC stimulated the pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) pathway and contributed to the ZNC-mediated defense response. Two years of field trials have shown that irrigation with ZNC at one of two optimal concentrations of 1 or 10ng/ml could significantly increase the output by 18.83% or more. The quality of potato tubers was also greatly improved, in which the contents of vitamin C, protein, and starch were significantly increased, especially the sugar content was increased by 125%. Spray application of ZNC onto potato plants significantly reduced the occurrence of potato blight disease with 66.49% of control efficacy at 200ng/ml and increased the potato yield by 66.68% or more in the field. In summary, plant endophytic fungus extract ZNC promoted potato immunity, yield, and quality and presented excellent potential in agricultural applications.

Funder

Key Technology Research and Development Program of Shandong

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3