Molecular Approaches Reduce Saturates and Eliminate trans Fats in Food Oils

Author:

Wallis James G.,Bengtsson Jesse D.,Browse John

Abstract

Vegetable oils composed of triacylglycerols (TAG) are a major source of calories in human diets. However, the fatty acid compositions of these oils are not ideal for human nutrition and the needs of the food industry. Saturated fatty acids contribute to health problems, while polyunsaturated fatty acids (PUFA) can become rancid upon storage or processing. In this review, we first summarize the pathways of fatty acid metabolism and TAG synthesis and detail the problems with the oil compositions of major crops. Then we describe how transgenic expression of desaturases and downregulation of the plastid FatB thioesterase have provided the means to lower oil saturates. The traditional solution to PUFA rancidity uses industrial chemistry to reduce PUFA content by partial hydrogenation, but this results in the production of trans fats that are even more unhealthy than saturated fats. We detail the discoveries in the biochemistry and molecular genetics of oil synthesis that provided the knowledge and tools to lower oil PUFA content by blocking their synthesis during seed development. Finally, we describe the successes in breeding and biotechnology that are giving us new, high-oleic, low PUFA varieties of soybean, canola and other oilseed crops.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3