Carbon allocation of Spirodela polyrhiza under boron toxicity

Author:

Pagliuso Débora,Pedro de Jesus Pereira João,Ulrich João Cristiano,Barbosa Cotrim Marycel Elena,Buckeridge Marcos S.,Grandis Adriana

Abstract

Pectic polysaccharides containing apiose, xylose, and uronic acids are excellent candidates for boron fixation. Duckweeds are the fastest-growing angiosperms that can absorb diverse metals and contaminants from water and have high pectin content in their cell walls. Therefore, these plants can be considered excellent boron (B) accumulators. This work aimed to investigate the relationship between B assimilation capacity with apiose content in the cell wall of Spirodela polyrhiza subjected to different boric acid concentrations. Plants were grown for 7 and 10 days in ½ Schenck-Hildebrandt media supplemented with 0 to 56 mg B.L-1, the non-structural and structural carbohydrates, and related genes were evaluated. The results showed that B altered the morphology and carbohydrate composition of this species during plant development. The optimum B concentration (1.8 mg B.L-1) led to the highest relative growth and biomass accumulation, reduced starch, and high pectin and apiose contents, together with increased expression of UDP-apiose/UDP-xylose synthase (AXS) and 1,4-α-galacturonosyltransferase (GAUT). The toxic state (28 and 56 mg B.L-1) increased the hexose contents in the cell wall with a concomitant reduction of pectins, apiose, and growth. The pectin content of S. polyrhiza was strongly associated with its growth capacity and regulation of B content within the cells, which have AXS as an important regulator. These findings suggest that duckweeds are suitable for B remediation, and their biomass can be used for bioenergy production.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Research Centre for Gas Innovation

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3