Missing Links in Predicting Berry Sunburn in Future Vineyards

Author:

Bahr Christopher,Schmidt Dominik,Kahlen Katrin

Abstract

Sunburn in grapevine berries is known as a recurring disorder causing severe yield losses and a decline in berry quality. The transition from healthy to sunburnt along a temporal trajectory is not fully understood. It is driven by light-boosted local heat impact and modulated by, e.g., past environments of the berry and its developmental state. Events of berry sunburn are often associated with heatwaves, indicating a link to climate change. In addition, the sensitivity of grapevine architecture to changing environmental condition indicates an urgent need to investigate and adapt mitigation strategies of berry sunburn in future vineyards. In this perspective, we want to identify missing links in predicting berry sunburn in vineyards and propose a modeling framework that may help us to investigate berry sunburn in future vineyards. For this, we propose to address open issues in both developing a model of berry sunburn and considering dynamic canopy growth, and canopy interaction with the environment and plant management such as shoot positioning or leaf removal. Because local environmental conditions drive sunburn, we aim at showing that identifying sunburn-reducing strategies in a vineyard under future environmental conditions can be supported by a modeling approach that integrates effects of management practices over time and takes grapevine architecture explicitly into account. We argue that functional-structural plant models may address such complex tasks. Once open issues are solved, they might be a promising tool to advance our knowledge on reducing risks of berry sunburn in silico.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3