Mucilaginibacter sp. K Improves Growth and Induces Salt Tolerance in Nonhost Plants via Multilevel Mechanisms

Author:

Fan Di,Smith Donald L.

Abstract

Soil salinity negatively modulates plant growth and development, contributing to severe decreases in the growth and production of crops. Mucilaginibacter sp. K is a root endophytic bacterium that was previously reported by our laboratory to stimulate growth and confer salt tolerance in Arabidopsis (Arabidopsis thaliana). The main purpose of the present study is to elucidate the physiological and molecular machinery responsible for the prospective salt tolerance as imparted by Mucilaginibacter sp. K. We first report that auxin, gibberellin, and MPK6 signalings were required for strain K-induced growth promotion and salt tolerance in Arabidopsis. Then, this strain was assessed as a remediation strategy to improve maize performance under salinity stress. Under normal growth conditions, the seed vigor index, nitrogen content, and plant growth were significantly improved in maize. After NaCl exposure, strain K significantly promoted the growth of maize seedlings, ameliorated decline in chlorophyll content and reduced accretion of MDA and ROS compared with the control. The possible mechanisms involved in salt resistance in maize could be the improved activities of SOD and POD (antioxidative system) and SPS (sucrose biosynthesis), upregulated content of total soluble sugar and ABA, and reduced Na+ accumulation. These physiological changes were then confirmed by induced gene expression for ion transportation, photosynthesis, ABA biosynthesis, and carbon metabolism. In summary, these results suggest that strain K promotes plant growth through increases in photosynthesis and auxin- and MPK6-dependent pathways; it also bestows salt resistance on plants through protection against oxidative toxicity, Na+ imbalance, and osmotic stress, along with the activation of auxin-, gibberellin-, and MPK6-dependent signaling pathways. This is the first detailed report of maize growth promotion by a Mucilaginibacter sp. strain from wild plant. This strain could be used as a favorable biofertilizer and a salinity stress alleviator for maize, with further ascertainment as to its reliability of performance under field conditions and in the presence of salt stress.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3