Identification of Weeds Based on Hyperspectral Imaging and Machine Learning

Author:

Li Yanjie,Al-Sarayreh Mahmoud,Irie Kenji,Hackell Deborah,Bourdot Graeme,Reis Marlon M.,Ghamkhar Kioumars

Abstract

Weeds can be major environmental and economic burdens in New Zealand. Traditional methods of weed control including manual and chemical approaches can be time consuming and costly. Some chemical herbicides may have negative environmental and human health impacts. One of the proposed important steps for providing alternatives to these traditional approaches is the automated identification and mapping of weeds. We used hyperspectral imaging data and machine learning to explore the possibility of fast, accurate and automated discrimination of weeds in pastures where ryegrass and clovers are the sown species. Hyperspectral images from two grasses (Setaria pumila [yellow bristle grass] and Stipa arundinacea [wind grass]) and two broad leaf weed species (Ranunculus acris [giant buttercup] and Cirsium arvense [Californian thistle]) were acquired and pre-processed using the standard normal variate method. We trained three classification models, namely partial least squares-discriminant analysis, support vector machine, and Multilayer Perceptron (MLP) using whole plant averaged (Av) spectra and superpixels (Sp) averaged spectra from each weed sample. All three classification models showed repeatable identification of four weeds using both Av and Sp spectra with a range of overall accuracy of 70–100%. However, MLP based on the Sp method produced the most reliable and robust prediction result (89.1% accuracy). Four significant spectral regions were found as highly informative for characterizing the four weed species and could form the basis for a rapid and efficient methodology for identifying weeds in ryegrass/clover pastures.

Funder

Ministry of Business, Innovation and Employment

Publisher

Frontiers Media SA

Subject

Plant Science

Reference88 articles.

1. SLIC superpixels compared to state-of-the-art superpixel methods.;Achanta;ITPAM,2012

2. An Image processing method based on features selection for crop plants and weeds discrimination using RGB images;Ahmad;Image and Signal Processing,2018

3. Multi-layer extreme learning machine-based autoencoder for hyperspectral image classification;Ahmad;Proceedings of the 14th International Conference on Computer Vision Theory and Applications (VISAPP’19),2019

4. Detection of red-meat adulteration by deep spectral–spatial features in hyperspectral images.;Al-Sarayreh;J. Imaging,2018

5. Deep learning for classification of hyperspectral data: a comparative review.;Audebert;IEEE Trans. Geosci. Remote Sens.,2019

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3