Tomato disease object detection method combining prior knowledge attention mechanism and multiscale features

Author:

Liu Jun,Wang Xuewei

Abstract

To address the challenges of insufficient accuracy in detecting tomato disease object detection caused by dense target distributions, large-scale variations, and poor feature information of small objects in complex backgrounds, this study proposes the tomato disease object detection method that integrates prior knowledge attention mechanism and multi-scale features (PKAMMF). Firstly, the visual features of tomato disease images are fused with prior knowledge through the prior knowledge attention mechanism to obtain enhanced visual features corresponding to tomato diseases. Secondly, a new feature fusion layer is constructed in the Neck section to reduce feature loss. Furthermore, a specialized prediction layer specifically designed to improve the model’s ability to detect small targets is incorporated. Finally, a new loss function known as A-SIOU (Adaptive Structured IoU) is employed to optimize the performance of the model in terms of bounding box regression. The experimental results on the self-built tomato disease dataset demonstrate the effectiveness of the proposed approach, and it achieves a mean average precision (mAP) of 91.96%, which is a 3.86% improvement compared to baseline methods. The results show significant improvements in the detection performance of multi-scale tomato disease objects.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference37 articles.

1. Tomato plant disease detection using transfer learning with C-GAN synthetic images;Abbas;Comput. Electron. Agric.,2021

2. Plant disease recognition model based on improved YOLOv5;Chen;Agronomy,2022

3. A high performance wheat disease detection based on position information;Cheng;Plants,2023

4. Literature review of disease detection in tomato leaf using deep learning techniques;David,2021

5. Bert: Pre-training of deep bidirectional transformers for language understanding;Devlin;arXiv,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3