Airflow ejection-wrapped clamping type seedling picking method and parameter optimization

Author:

Ma Guoxin,Chen Xi,Liu Yang,Han Luhua,Mao Hanping,Hu Jianping

Abstract

Since the current clamp-type and push-out-type seedling picking method brought damage to seedlings, this study aimed to proposed an airflow ejection-wrapped clamping type seedling picking method, which used airflow to eject out seedling and the seedlings were wrapped clamped to reduce the damage of seedlings during seedling picking process. The parameter model was established through theoretical design, then the parameters were optimized through coupling simulation analysis, and the validity of these parameters was verified through experiments. We found that the diameter of the airflow nozzle was selected as 3.5 mm to match with the drainage outlet of the plug tray, and the airflow pressure which could eject out seedlings was calculated as 0.146 Mpa~0.315 Mpa on the basis of gas jet dynamic. The fluid-solid coupling simulation of airflow ejection in Comsol proposed that the seedlings could be ejected out under the airflow pressure was equal to or greater than 0.4 Mpa, and the airflow should be maintained for about 0.3 s to ensure the posture of the seedlings ejected out for better seedling clamping. The further fluid-discrete body simulation of airflow ejection by using Fluent-Edem coupling method indicated that the seedling was damaged under airflow pressure of 0.5 MPa, so the airflow pressure should be set as 0.4 MPa during seedling ejection process. Besides, a wrapped clamping type effector which clamped the seedlings from all sides in the form of flexible package was also designed to match with the airflow ejection method, and the RecurDyn-Edem coupling simulation showed that the end-effector could tightly clamp the seedling without damage when the angle between the clamping slices and the vertical direction was 8.5°. Finally, the airflow ejection-wrapped clamping type seedling picking device was manufactured, and the verification tests verified the simulation results. This research can provide some references for the automatic seedling picking technology.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3