Insights Into the MYB-Related Transcription Factors Involved in Regulating Floral Aroma Synthesis in Sweet Osmanthus

Author:

Yan Xin,Ding Wenjie,Wu Xiuyi,Wang Lianggui,Yang Xiulian,Yue Yuanzheng

Abstract

As an important member of the MYB transcription factor (TF) family, the MYB-related TFs play multiple roles in regulating the synthesis of secondary metabolites and developmental processes, as well as in response to numerous biotic and abiotic stressors in plants. However, little is known regarding their roles in regulating the formation of floral volatile organic compounds (VOCs). In this study, we conducted a genome-wide analysis of MYB-related proteins in sweet osmanthus; 212 OfMYB-related TFs were divided into three distinct subgroups based on the phylogenetic analysis. Additionally, we found that the expansion of the OfMYB-related genes occurred primarily through segmental duplication events, and purifying selection occurred in all duplicated gene pairs. RNA-seq data revealed that the OfMYB-related genes were widely expressed in different organs of sweet osmanthus, and some showed flower organ/development stage-preferential expression patterns. Here, three OfMYB-related genes (OfMYB1R70/114/201), which were expressed nuclearly in floral organs, were found to be significantly involved in regulating the synthesis of floral VOCs. Only, OfMYB1R201 had transcriptional activity, thus implying that this gene participates in regulating the expression of VOC synthesis related genes. Remarkably, the transient expression results suggested that OfMYB1R70, OfMYB1R114, and OfMYB1R201 are involved in the regulation of VOC synthesis; OfMYB1R114 and OfMYB1R70 are involved in accelerating β-ionone formation. In contrast, OfMYB1R201 decreases the synthesis of β-ionone. Our results deepen our knowledge of the functions of MYB-related TFs and provide critical candidate genes for the floral aroma breeding of sweet osmanthus in the future.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3