Rootstock effects on leaf function and isotope composition in apple occurred on both scion grafted and ungrafted rootstocks under hydroponic conditions

Author:

Biasuz Erica Casagrande,Kalcsits Lee

Abstract

Rootstocks are used in modern apple production to increase productivity, abiotic and biotic stress tolerance, and fruit quality. While dwarfing for apple rootstocks has been well characterized, the physiological mechanisms controlling dwarfing have not. Previous research has reported rootstock effects on scion water relations. Root architecture and variability in soil moisture across rooting depths can also contribute to these differences among rootstocks in the field. To exclude these effects on rootstock behavior, scions were grafted onto four different rootstocks with varying effects on scion vigor (B.9, M.9, G.41 and G.890). Non-grafted rootstocks were also grown to examine whether the effects of rootstock occurred independently from scion grafting. Plants were grown in a greenhouse under near steady-state hydroponic conditions. Carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) isotope composition were evaluated and relationships with carbon assimilation, water relations, and shoot growth were tested. Rootstocks affected scion shoot growth, aligning with known levels of vigor for these four rootstocks, and were consistent between the two scion cultivars. Furthermore, changes in water relations influenced by rootstock genotype significantly affected leaf, stem, and root δ13C, δ18O, and δ15N. Lower δ13C and δ18O were inconsistently associated with rootstock genotypes with higher vigor in leaves, stems, and roots. G.41 had lower δ15N in roots, stems, and leaves in both grafted and ungrafted trees. The effects of rootstock on aboveground water relations were also similar for leaves of ungrafted rootstocks. This study provides further evidence that dwarfing for apple rootstocks is linked with physiological limitations to water delivery to the developing scion.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3