Based on machine learning algorithms for estimating leaf phosphorus concentration of rice using optimized spectral indices and continuous wavelet transform

Author:

Zhang Yi,Wang Teng,Li Zheng,Wang Tianli,Cao Ning

Abstract

Remotely estimating leaf phosphorus concentration (LPC) is crucial for fertilization management, crop growth monitoring, and the development of precision agricultural strategy. This study aimed to explore the best prediction model for the LPC of rice (Oryza sativa L.) using machine learning algorithms fed with full-band (OR), spectral indices (SIs), and wavelet features. To obtain the LPC and leaf spectra reflectance, the pot experiments with four phosphorus (P) treatments and two rice cultivars were carried out in a greenhouse in 2020-2021. The results indicated that P deficiency increased leaf reflectance in the visible region (350-750 nm) and decreased the reflectance in the near-infrared (NIR, 750-1350 nm) regions compared to the P-sufficient treatment. Difference spectral index (DSI) composed of 1080 nm and 1070 nm showed the best performance for LPC estimation in calibration (R2 = 0.54) and validation (R2 = 0.55). To filter and denoise spectral data effectively, continuous wavelet transform (CWT) of the original spectrum was used to improve the accuracy of prediction. The model based on Mexican Hat (Mexh) wavelet function (1680 nm, Scale 6) demonstrated the best performance with the calibration R2 of 0.58, validation R2 of 0.56 and RMSE of 0.61 mg g−1. In machine learning, random forest (RF) had the best model accuracy in OR, SIs, CWT, and SIs + CWT compared with other four algorithms. The SIs and CWT coupling with the RF algorithm had the best results of model validation, the R2 was 0.73 and the RMSE was 0.50 mg g−1, followed by CWT (R2 = 0.71, RMSE = 0.51 mg g−1), OR (R2 = 0.66, RMSE = 0.60 mg g−1), and SIs (R2 = 0.57, RMSE = 0.64 mg g−1). Compared with the best performing SIs based on the linear regression models, the RF algorithm combining SIs and CWT improved the prediction of LPC with R2 increased by 32%. Our results provide a valuable reference for spectral monitoring of rice LPC under different soil P-supplying levels in a large scale.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3