Author:
Dermail Abil,Mitchell Mariah,Foster Tyler,Fakude Mercy,Chen Yu-Ru,Suriharn Khundej,Frei Ursula Karolina,Lübberstedt Thomas
Abstract
Doubled haploid (DH) line production through in vivo maternal haploid induction is widely adopted in maize breeding programs. The established protocol for DH production includes four steps namely in vivo maternal haploid induction, haploid identification, genome doubling of haploid, and self-fertilization of doubled haploids. Since modern haploid inducers still produce relatively small portion of haploids among undesirable hybrid kernels, haploid identification is typically laborious, costly, and time-consuming, making this step the second foremost in the DH technique. This manuscript reviews numerous methods for haploid identification from different approaches including the innate differences in haploids and diploids, biomarkers integrated in haploid inducers, and automated seed sorting. The phenotypic differentiation, genetic basis, advantages, and limitations of each biomarker system are highlighted. Several approaches of automated seed sorting from different research groups are also discussed regarding the platform or instrument used, sorting time, accuracy, advantages, limitations, and challenges before they go through commercialization. The past haploid selection was focusing on finding the distinguishable marker systems with the key to effectiveness. The current haploid selection is adopting multiple reliable biomarker systems with the key to efficiency while seeking the possibility for automation. Fully automated high-throughput haploid sorting would be promising in near future with the key to robustness with retaining the feasible level of accuracy. The system that can meet between three major constraints (time, workforce, and budget) and the sorting scale would be the best option.
Funder
National Institute of Food and Agriculture
National Science Foundation
Raymond F. Baker Center for Plant Breeding
Plant Sciences Institute, Iowa State University
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献