Detection of Small-Sized Insects in Sticky Trapping Images Using Spectral Residual Model and Machine Learning

Author:

Li Wenyong,Yang Zhankui,Lv Jiawei,Zheng Tengfei,Li Ming,Sun Chuanheng

Abstract

One fundamental component of Integrated pest management (IPM) is field monitoring and growers use information gathered from scouting to make an appropriate control tactics. Whitefly (Bemisia tabaci) and thrips (Frankliniella occidentalis) are two most prominent pests in greenhouses of northern China. Traditionally, growers estimate the population of these pests by counting insects caught on sticky traps, which is not only a challenging task but also an extremely time-consuming one. To alleviate this situation, this study proposed an automated detection approach to meet the need for continuous monitoring of pests in greenhouse conditions. Candidate targets were firstly located using a spectral residual model and then different color features were extracted. Ultimately, Whitefly and thrips were identified using a support vector machine classifier with an accuracy of 93.9 and 89.9%, a true positive rate of 93.1 and 80.1%, and a false positive rate of 9.9 and 12.3%, respectively. Identification performance was further tested via comparison between manual and automatic counting with a coefficient of determination, R2, of 0.9785 and 0.9582. The results show that the proposed method can provide a comparable performance with previous handcrafted feature-based methods, furthermore, it does not require the support of high-performance hardware compare with deep learning-based method. This study demonstrates the potential of developing a vision-based identification system to facilitate rapid gathering of information pertaining to numbers of small-sized pests in greenhouse agriculture and make a reliable estimation of overall population density.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference39 articles.

1. A cognitive vision approach to early pest detection in greenhouse crops.;Boissard;Comput. Electron. Agric.,2008

2. Color grading of beef fat by using computer vision and support vector machine.;Chen;Comput. Electron. Agric.,2010

3. Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis.;Cho;Int. J. Math. Comput. Simu.,2007

4. Temporal spectral residual for fast salient motion detection.;Cui;Neurocomputing,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3