Isolation and characterization of phosphate-solubilizing bacterium Pantoea rhizosphaerae sp. nov. from Acer truncatum rhizosphere soil and its effect on Acer truncatum growth

Author:

Ma Qinghua,He Shanwen,Wang Xing,Rengel Zed,Chen Lin,Wang Xinghong,Pei Shunxiang,Xin Xuebing,Zhang Xiaoxia

Abstract

The Acer truncatum Bunge, widely distributed in North China, shows excellent tolerance to low-P soils. However, little information is available on potential phosphate-solubilizing bacterial (PSB) strains from the A. truncatum rhizosphere. The objectives of this work were to isolate and characterize PSB from A. truncatum rhizosphere soil and to evaluate the effect of inoculation with the selected strain on A. truncatum seedlings. The strains were characterized on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, 16S rRNA gene and the whole-genome sequence. A Gram-negative and rod-shaped bacterium, designated MQR6T, showed a high capacity to solubilize phosphate and produce indole-3-acetic acid (IAA) and siderophores. The strain can solubilize tricalcium phosphate (TCP) and rock phosphate (RP), and the solubilization of TCP was about 60% more effective than RP. Phylogenetic analyses based on the 16S rRNA gene and whole-genome sequences revealed that strain MQR6T formed a distinct phyletic lineage as a new species within the genus Pantoea. The digital DNA-DNA hybridization value between strain MQR6T and the closely related strains was 19.5-23.3%. The major cellular fatty acids were summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω6c and/or C18:1ω7c), C14:0, C16:0, and C17:0 cyclo. Several genes related to IAA production, phosphonate transport, phosphate solubilization and siderophore biogenesis were found in the MQR6T genome. Furthermore, inoculation with the strain MQR6T significantly improved plant height, trunk diameter, dry weight and P accumulation in roots and shoot of A. truncatum seedlings compared to non-inoculated control. These plant parameters were improved even further in the treatment with both inoculation and P fertilization. Our results suggested that MQR6T represented a new species we named Pantoea rhizosphaerae, as a plant growth-promoting rhizobacterium that can solubilize inorganic P and improve growth of A. truncatum seedlings, emerging as a potential strategy to improve A. truncatum cultivation.

Funder

Chinese Academy of Forestry

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3