Establishment and application of a root wounding–immersion method for efficient virus-induced gene silencing in plants

Author:

Li Xinyun,Tao Na,Xu Bin,Xu Junqiang,Yang Zhengan,Jiang Caiqian,Zhou Ying,Deng Minghua,Lv Junheng,Zhao Kai

Abstract

In the post-genomic era, virus-induced gene silencing (VIGS) has played an important role in research on reverse genetics in plants. Commonly used Agrobacterium-mediated VIGS inoculation methods include stem scratching, leaf infiltration, use of agrodrench, and air-brush spraying. In this study, we developed a root wounding–immersion method in which 1/3 of the plant root (length) was cut and immersed in a tobacco rattle virus (TRV)1:TRV2 mixed solution for 30 min. We optimized the procedure in Nicotiana benthamiana and successfully silenced N. benthamiana, tomato (Solanum lycopersicum), pepper (Capsicum annuum L.), eggplant (Solanum melongena), and Arabidopsis thaliana phytoene desaturase (PDS), and we observed the movement of green fluorescent protein (GFP) from the roots to the stem and leaves. The silencing rate of PDS in N. benthamiana and tomato was 95–100%. In addition, we successfully silenced two disease-resistance genes, SITL5 and SITL6, to decrease disease resistance in tomatoes (CLN2037E). The root wounding–immersion method can be used to inoculate large batches of plants in a short time and with high efficiency, and fresh bacterial infusions can be reused several times. The most important aspect of the root wounding–immersion method is its application to plant species susceptible to root inoculation, as well as its ability to inoculate seedlings from early growth stages. This method offers a means to conduct large-scale functional genome screening in plants.

Publisher

Frontiers Media SA

Reference63 articles.

1. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system;Ali;Mol. Plant,2015

2. Differential contributions of plant Dicer-like proteins to antiviral defenses against potato virus X in leaves and roots;Andika;Plant journal: Cell Mol. Biol.,2015

3. Replication protein A subunit 3 and the iron efficiency response in soybean;Atwood;Plant Cell Environ.,2014

4. RNA silencing in plants;Baulcombe;Nature,2004

5. The potential of virus-induced gene silencing for speeding up functional characterization of plant genes;Benedito;Genet. Mol. Res: GMR,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3