Net CO2 assimilation rate response of tomato seedlings (Solanum lycopersicum L.) to the interaction between light intensity, spectrum and ambient CO2 concentration

Author:

Moratiel Rubén,Jimenez Raúl,Mate Miriam,Ibánez Miguel Angel,Moreno Marta M.,Tarquis Ana M.

Abstract

Artificial lighting is complementary and single-source lighting for controlled Environment Agriculture (CEA) to increase crop productivity. Installations to control CO2 levels and luminaires with variable spectrum and intensity are becoming increasingly common. In order to see the net assimilation of CO2 based on the relationship between the three factors: intensity, spectrum and CO2 concentration, tests are proposed on tomatoes seedling with combinations of ten spectra (100B, 80B20G, 20B80G, 100G, 80G20R, 20G80R, 100R, 80R20B, 20R80B, 37R36G27B) seven light intensities (30, 90, 200, 350, 500, 700 and 1000 μmol·m-2 s-1) and nine CO2 concentrations (200, 300, 400, 500, 600, 700, 800 and 900 ppm). These tomato seedlings grew under uniform conditions with no treatments applied up to the moment of measurement by a differential gas analyzer. We have developed a model to evaluate and determine under what spectrum and intensity of light photosynthesis the Net assimilation of CO2 (An) is more significant in the leaves of tomato plants, considering the CO2 concentration as an independent variable in the model. The evaluation of the model parameters for each spectrum and intensity shows that the intensity has a more decisive influence on the maximum An rate than the spectra. For intensities lower than 350 μmol·m-2 s-1, it is observed that the spectrum has a greater influence on the variable An. The spectra with the best behaviour were 80R20B and 80B20R, which maintained An values between 2 and 4 (μmol CO2·m-2·s-1) above the spectra with the worst behaviour (100G, 80G20R, 20G80R and 37B36G27R) in practically all situations. Photosynthetic Light-Use Efficiency (PLUE) was also higher for the 80B20R and 20R80B spectra with values of 36,07 and 33,84 mmol CO2·mol photon-1, respectively, for light intensities of 200 μmol·m-2 s-1 and 400 ppm of CO2that increased to values of 49,65 and 48,38 mmol CO2·mol photon-1 for the same light intensity and concentrations of 850 ppm. The choice of spectrum is essential, as indicated by the data from this study, to optimize the photosynthesis of the plant species grown in the plant factory where light intensities are adjusted for greater profitability.

Funder

Comunidad de Madrid

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3