Narrow lpa1 Metaxylems Enhance Drought Tolerance and Optimize Water Use for Grain Filling in Dwarf Rice

Author:

Priatama Ryza A.,Heo Jung,Kim Sung Hoon,Rajendran Sujeevan,Yoon Seoa,Jeong Dong-Hoon,Choo Young-Kug,Bae Jong Hyang,Kim Chul Min,Lee Yeon Hee,Demura Taku,Lee Young Koung,Choi Eun-Young,Han Chang-deok,Park Soon Ju

Abstract

Rice cultivation needs extensive amounts of water. Moreover, increased frequency of droughts and water scarcity has become a global concern for rice cultivation. Hence, optimization of water use is crucial for sustainable agriculture. Here, we characterized Loose Plant Architecture 1 (LPA1) in vasculature development, water transport, drought resistance, and grain yield. We performed genetic combination of lpa1 with semi-dwarf mutant to offer the optimum rice architecture for more efficient water use. LPA1 expressed in pre-vascular cells of leaf primordia regulates genes associated with carbohydrate metabolism and cell enlargement. Thus, it plays a role in metaxylem enlargement of the aerial organs. Narrow metaxylem of lpa1 exhibit leaves curling on sunny day and convey drought tolerance but reduce grain yield in mature plants. However, the genetic combination of lpa1 with semi-dwarf mutant (dep1-ko or d2) offer optimal water supply and drought resistance without impacting grain-filling rates. Our results show that water use, and transports can be genetically controlled by optimizing metaxylem vessel size and plant height, which may be utilized for enhancing drought tolerance and offers the potential solution to face the more frequent harsh climate condition in the future.

Funder

National Research Foundation of Korea

Ministry of Science, ICT and Future Planning

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3