Leaf Stoichiometry of Potentilla fruticosa Across Elevations in China’s Qilian Mountains

Author:

Qin Yanyan,Liu Wei,Zhang Xiaofang,Adamowski Jan F.,Biswas Asim

Abstract

As an individual plant species can develop its own leaf stoichiometry to adapt to environmental changes, this stoichiometry can provide critical information about a plant species’ growth and its potential management in the ecosystem housing it. However, leaf stoichiometry is largely undocumented in regions with large environmental changes arising from differences in elevation. The leaf stoichiometry of Potentilla fruticosa L., a major alpine shrub playing an important role in supporting ecosystem functions and services in China’s Qilian Mountains (Northeast Qinghai–Tibetan Plateau), was investigated at different elevations (2,400, 2,600, 2,800, 3,000, 3,200, 3,500, and 3,800 m). At each elevation, leaf elemental (C, N, and P) concentrations were measured in P. fruticosa leaves sampled from three plots (10 × 10 m), and edaphic properties were assessed in nine quadrats (1 × 1 m, three quadrats per plot). Temperature and precipitation were calculated using an empirical formula. Maximum and minimum leaf carbon (C) concentrations ([C]leaf) of 524 ± 5.88 and 403 ± 3.01 g kg–1 were measured at 2,600 and 3,500 m, respectively. Leaf nitrogen (N) concentration ([N]leaf) showed a generally increasing trend with elevation and peaked at 3,500 m (27.33 ± 0.26 g kg–1). Leaf phosphorus (P) concentration ([P]leaf) varied slightly from 2,400 to 3,200 m and then dropped to a minimum (0.60 ± 0.10 g kg–1) at 3800 m. The [C]leaf:[N]leaf, [C]leaf:[P]leaf, and [N]leaf:[P]leaf varied little from 2,400 to 3,000 m but fluctuated somewhat at higher elevations. The main factors affecting P. fruticosa leaf stoichiometry were soil organic C, pH, and soil total P, and the main limiting element for the growth of P. fruticosa in the study area was P. In conclusion, changes in elevation affected leaf stoichiometry of P. fruticosa mainly due to altered soil properties, and addressing phosphorus limitation, especially at higher elevations mainly due to losses caused by high precipitation and sparse vegetation, is a key measure to promote P. fruticosa growth in this region.

Funder

Natural Science Foundation of Gansu Province

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3