No Tillage With Plastic Re-mulching Maintains High Maize Productivity via Regulating Hydrothermal Effects in an Arid Region

Author:

Yin Wen,Chai Qiang,Guo Yao,Fan Hong,Fan Zhilong,Hu Falong,Zhao Cai,Yu Aizhong,Coulter Jeffrey A.

Abstract

Plastic is a valuable mulching measure for increasing crop productivity in arid environments; however, little is known about the main mechanism by which this valuable technology actuates spatial–temporal changes in soil hydrothermal effect. So a 3-year field experiment was conducted to optimize soil hydrothermal effect of maize field with three plastic mulched management treatments: (1) no tillage with plastic re-mulching (NM), (2) reduced tillage with plastic mulching (RM), and (3) conventional tillage with annual new plastic mulching (CM). The results showed that NM treatment increased soil water content by 6.6–8.4% from maize sowing to seedling stage, than did CM, and it created a good soil moisture environment for sowing of maize. Also, NM had greater soil water content by 4.8–5.6% from maize silking to early-filling stage than had CM, and it made up for the abundant demand of soil moisture for the vigorous growth of maize filling stage. The NM treatment increased water consumption (WC) before maize big-flare stage, decreased WC from big-flare to early-filling stage, and increased WC after early-filling stage. So NM treatment effectively coordinated water demand contradiction of maize at entire growing season. NM decreased soil accumulated temperature (SAT) by 7.0–13.0% at maize sowing to early-filling stage than did CM, but NM had little influence on the SAT during filling stage. In particular, the treatment on NM had smaller absolute values of air–soil temperature differences than RM and CM treatments during maize filling stage, indicating that NM treatment maintains the relative stability of soil temperature for ensuring grain filling of maize. The NM treatment allowed the maize to grow in a suitable hydrothermal status and still maintained high yield. In addition, NM treatment obtained higher net income and rate of return by 6.4–11.0% and 44.1–54.5%, respectively, than did CM, because NM treatment mainly decreased the input costs for plastic and machine operations. Therefore, the NM treatment can be recommended as a promising technique to overcome simultaneous heat stress and water shortage in arid environments.

Funder

Science and Technology Program of Gansu Province

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3