QTLs Identification for Iron Chlorosis in a Segregating Peach–Almond Progeny Through Double-Digest Sequence-Based Genotyping (SBG)

Author:

Guajardo Verónica,Martínez-García Pedro José,Solís Simón,Calleja-Satrustegui Aitziber,Saski Christopher,Moreno María Ángeles

Abstract

Linkage maps are highly appreciated tools for cultivar and rootstock breeding programs because they are suitable for genetic and genomic studies. In this study, we report on using sequence-based genotyping (SBG) approach to simultaneously discover and genotype SNPs from two peach-based rootstocks (“Adafuel” and “Flordaguard”) and their progeny (n= 118): from a initial mapping population composed of 131 seedlings. The plant material was developed at the EEAD–CSICPrunusrootstocks breeding program, aiming to obtain a segregating progeny for a range of characters of agronomical interest to rootstock breeding (iron-chlorosis and root-asphyxia tolerance, nematode resistance, vigor traits, and other effects on scion cultivars). Sequence reads obtained from double-digest SBG were aligned to theP. persicareference genome (Peach v2.0). While eight linkage groups were constructed for “Adafuel,” only four linkage groups were constructed for “Flordaguard,” given the low heterozygosity of this last genotype. High synteny and co-linearity were observed between obtained maps and Peach v2.0. On the other hand, this work aimed to elucidate the genetic basis of leaf chlorosis tolerance using the phenotypic segregation of the progeny to iron-chlorosis tolerance, along with the QTLs responsible for leaf chlorosis. The F1 mapping population, composed initially of 131 seedlings, was growing in four field trials established on calcareous soils at the experimental field of the EEAD-CSIC in Zaragoza, Spain. From the initial mapping population, 131 individuals were selected for their phenotypical characterization with SPAD measurements of plants grown in the field, exhibiting a great variability. Significant QTLs associated with tolerance to iron chlorosis were found in LG1, LG5, LG7, and LG8. The significant QTLs detected in LG5 and LG7 have not been associated with this abiotic stress before inPrunus. Several candidate genes such as Prupe.1G541100, predicted as glutamyl-tRNA reductase 1, Prupe.1G468200, encoding a 2-oxoglutarate (2OG), and Fe(II)-dependent oxygenase superfamily protein or Prupe.1G577000 (ppa011050.m), a NIFU-like protein 2 (NIFU2) were detected. The exact biological function of some of these genes should be verified for the future development of marker-assisted selection for peach iron chlorosis tolerance.

Funder

Ministerio de Ciencia e Innovación

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3