Insight into the biochemical and physiological mechanisms of nanoparticles-induced arsenic tolerance in bamboo

Author:

Emamverdian Abolghassem,Ding Yulong,Hasanuzzaman Mirza,Barker James,Liu Guohua,Li Yang,Mokhberdoran Farzad

Abstract

IntroductionArsenic (As) contamination in soil, sediments, and water poses a significant threat to the growth of bamboo plants. However, nanoparticles with high metal absorbance capacity can play a key role in the reduction of heavy metals toxicity in plants as well as maintaining their growth under toxicity.MethodsHence, an in vitro experiment was conducted to determine the influence of three types of nanoparticles: 150 µM silicon nanoparticles (SiO2 NPs), 150 µM titanium nanoparticles (TiO2 NPs), and 150 µM zinc oxide nanoparticles (ZnO NPs) on As (150 µM and 250 µM) tolerance enhancement of a one-year-old bamboo species (Pleioblastus pygmaeus).Results and discussionThe results showed that while As at 150 µM and 250 µM significantly disrupted the plant growth by excessive generation of reactive oxygen species (ROS) components, and inducing cell membrane peroxidation, the addition of NPs increased both enzymatic and non-enzymatic antioxidant activities, upregulated glyoxalase defense system, and improved gas exchange parameters and photosynthetic pigments content, leading to the enhanced plant shoot and root dry weight. These were achieved by lowering levels of ROS, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) and the superoxide radical (O2•−), as well as decreasing As accumulation in the plant organs. Thus, it might be concluded that ZnO NPs, SiO2NPs, and TiO2NPS alone or in combination can significantly increase the bamboo plant tolerance to As toxicity via key mechanisms, including induction of various antioxidants and glyoxalase defense systems, scavenging of ROS and methylglyoxal (MG), increasing phytochelatins production, reduction of As accumulation and translocation, and improving photosynthetic pigments under As toxicity. Additionally, the results showed that the combined application of 150 µM ZnO NPs, SiO2 NPs, and TiO2 NPs had the greatest effect on enhancing the plant tolerance to As at 150 µM and 250 µM.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3