Multiclass classification of imagined speech EEG using noise-assisted multivariate empirical mode decomposition and multireceptive field convolutional neural network

Author:

Park Hyeong-jun,Lee Boreom

Abstract

IntroductionIn this study, we classified electroencephalography (EEG) data of imagined speech using signal decomposition and multireceptive convolutional neural network. The imagined speech EEG with five vowels /a/, /e/, /i/, /o/, and /u/, and mute (rest) sounds were obtained from ten study participants.Materials and methodsFirst, two different signal decomposition methods were applied for comparison: noise-assisted multivariate empirical mode decomposition and wavelet packet decomposition. Six statistical features were calculated from the decomposed eight sub-frequency bands EEG. Next, all features obtained from each channel of the trial were vectorized and used as the input vector of classifiers. Lastly, EEG was classified using multireceptive field convolutional neural network and several other classifiers for comparison.ResultsWe achieved an average classification rate of 73.09 and up to 80.41% in a multiclass (six classes) setup (Chance: 16.67%). In comparison with various other classifiers, significant improvements for other classifiers were achieved (p-value < 0.05). From the frequency sub-band analysis, high-frequency band regions and the lowest-frequency band region contain more information about imagined vowel EEG data. The misclassification and classification rate of each vowel imaginary EEG was analyzed through a confusion matrix.DiscussionImagined speech EEG can be classified successfully using the proposed signal decomposition method and a convolutional neural network. The proposed classification method for imagined speech EEG can contribute to developing a practical imagined speech-based brain-computer interfaces system.

Funder

National Research Foundation of Korea

Gwangju Institute of Science and Technology

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference48 articles.

1. Review of machine learning techniques for EEG based brain computer interface.;Aggarwal;Arch. Comput. Methods Eng.,2022

2. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review.;Altaheri;Neural Comput. Appl.,2021

3. EEG signal classification of imagined speech based on Riemannian distance of correntropy spectral density.;Bakhshali;Biomed. Signal Process. Control,2020

4. Neuroimaging, neural population models for;Bojak;Encyclopedia of computational neuroscience,2013

5. Brain– computer interfaces for communication and rehabilitation.;Chaudhary;Nat. Rev. Neurol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3