Author:
Russo Samuele,Tibermacine Imad Eddine,Tibermacine Ahmed,Chebana Dounia,Nahili Abdelhakim,Starczewscki Janusz,Napoli Christian
Abstract
IntroductionThe primary objective of this research is to examine acrophobia, a widely prevalent and highly severe phobia characterized by an overwhelming dread of heights, which has a substantial impact on a significant proportion of individuals worldwide. The objective of our study was to develop a real-time and precise instrument for evaluating levels of acrophobia by utilizing electroencephalogram (EEG) signals.MethodsEEG data was gathered from a sample of 18 individuals diagnosed with acrophobia. Subsequently, a range of classifiers, namely Support Vector Classifier (SVC), K-nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Adaboost, Linear Discriminant Analysis (LDA), Convolutional Neural Network (CNN), and Artificial Neural Network (ANN), were employed in the analysis. These methodologies encompass both machine learning (ML) and deep learning (DL) techniques.ResultsThe Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) models demonstrated notable efficacy. The Convolutional Neural Network (CNN) model demonstrated a training accuracy of 96% and a testing accuracy of 99%, whereas the Artificial Neural Network (ANN) model attained a training accuracy of 96% and a testing accuracy of 97%. The findings of this study highlight the effectiveness of the proposed methodology in accurately categorizing real-time degrees of acrophobia using EEG data. Further investigation using correlation matrices for each level of acrophobia showed substantial EEG frequency band connections. Beta and Gamma mean values correlated strongly, suggesting cognitive arousal and acrophobic involvement could synchronize activity. Beta and Gamma activity correlated strongly with acrophobia, especially at higher levels.DiscussionThe results underscore the promise of this innovative approach as a dependable and sophisticated method for evaluating acrophobia. This methodology has the potential to make a substantial contribution toward the comprehension and assessment of acrophobia, hence facilitating the development of more individualized and efficacious therapeutic interventions.
Funder
Ministero dell'Università e della Ricerca
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献