Disrupted Topological Organization of Functional Networks in Asymptomatic Carotid Plaque Without Significant Carotid Stenosis: A Resting-State fMRI Study

Author:

Tuo Jia,He Wei,Yang Shuai,Liu Lihui,Liu Xiaojuan,Liu Hui,Wang Yang,Tang Tao,Xia Jian,Liao Weihua,Liu Yunhai,Huang Qing

Abstract

Purpose: Previous studies have found that there are significant changes in functional network properties for patients with moderate to severe carotid artery stenosis. Our study aimed to explore the topology properties of brain functional network in asymptomatic patients with carotid plaque without significant stenosis.Methods: A total of 61 asymptomatic patients with carotid plaque (mean age 61.79 ± 7.35 years) and 25 healthy control subjects (HC; 58.12 ± 6.79 years) were recruited. General data collection, carotid ultrasound examination and resting state functional magnetic resonance imaging were performed on all subjects. Graph-theory was applied to examine the differences in the brain functional network topological properties between two groups.Results: In the plaque group, Eloc(P = 0.03), γ (P = 0.01), and σ (P = 0.01) were significantly higher than in the HC group. The degree centrality of left middle frontal gyrus and the nodal efficiency of left middle frontal gyrus and right inferior parietal angular gyrus were significantly higher in the plaque group than in HC. The degree centrality and betweenness centrality of right middle temporal gyrus, as well as the nodal efficiency of right middle temporal gyrus, were significantly lower in the plaque group than in HC.Conclusions: The brain functional networks of patients with carotid plaques differ from those of healthy controls. Asymptomatic patients with carotid plaques exhibit increased local and global connectivity, which may reflect subtle reorganizations in response to early brain damage.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3