Combining convolutional attention mechanism and residual deformable Transformer for infarct segmentation from CT scans of acute ischemic stroke patients

Author:

Xu Zhixiang,Ding Changsong

Abstract

BackgroundSegmentation and evaluation of infarcts on medical images are essential for diagnosis and prognosis of acute ischemic stroke (AIS). Computed tomography (CT) is the first-choice examination for patients with AIS.MethodsTo accurately segment infarcts from the CT images of patients with AIS, we proposed an automated segmentation method combining the convolutional attention mechanism and residual Deformable Transformer in this article. The method used the encoder-decoder structure, where the encoders were employed for downsampling to obtain the feature of the images and the decoder was used for upsampling and segmentation. In addition, we further applied the convolutional attention mechanism and residual network structure to improve the effectiveness of feature extraction. Our code is available at: https://github.com/XZhiXiang/AIS-segmentation/tree/master.ResultsThe proposed method was assessed on a public dataset containing 397 non-contrast CT (NCCT) images of AIS patients (AISD dataset). The symptom onset to CT time was less than 24 h. The experimental results illustrate that this work had a Dice coefficient (DC) of 58.66% for AIS infarct segmentation, which outperforms several existing methods. Furthermore, volumetric analysis of infarcts indicated a strong correlation (Pearson correlation coefficient = 0.948) between the AIS infarct volume obtained by the proposed method and manual segmentation.ConclusionThe strong correlation between the infarct segmentation obtained via our method and the ground truth allows us to conclude that our method could accurately segment infarcts from NCCT images.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3