Influence of exercise on quantity and deformability of immune cells in multiple sclerosis

Author:

Proschmann Undine,Shalchi-Amirkhiz Puya,Andres Pauline,Haase Rocco,Inojosa Hernán,Ziemssen Tjalf,Akgün Katja

Abstract

ObjectiveThe study aimed to investigate the effect of exercise on immune cell count and cell mechanical properties in people with multiple sclerosis (pwMS) on different disease-modifying treatments (DMT) vs. healthy controls (HCs).MethodsA cohort of 16 HCs and 45 pwMS, including patients with lymphopenia (alemtuzumab and fingolimod) as well as increased lymphocyte counts (natalizumab), was evaluated for exercise-mediated effects on immune cell counts and lymphocyte deformability. As exercise paradigms, climbing stairs at normal speed or as fast as possible and cycling were used, while blood samples were collected before, immediately, and 20 as well as 60 min post-exercise. Immune cell subtypes and lymphocyte deformability were analyzed using multicolor flow cytometry and real-time deformability cytometry.ResultsAn increase in lymphocytes and selected subsets was observed following exercise in HCs and all pwMS on different DMTs. Patients with lymphopenia exhibited an increase in absolute lymphocyte counts and immune cell subsets till just below or into the reference range. An increase above the upper limit of the reference range was detected in patients on natalizumab. Exercise-induced alterations were observable even in low and more pronounced in high-intensity physical activities. Lymphocyte deformability was found to be only mildly affected by the investigated exercise regimes.ConclusionPeople with multiple sclerosis (PwMS) treated with alemtuzumab, fingolimod, and natalizumab respond to acute exercise with a comparable temporal pattern characterized by the increase of immune cell subsets as HCs. The magnitude of response is influenced by exercise intensity. Exercise-mediated effects should be considered when interpreting laboratory values in patients on immunomodulatory therapy. The impact of exercise on biophysical properties should be further elucidated.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3