The role of pressure and friction forces in automated insertion of cochlear implants

Author:

Fröhlich Max,Deutz Jaro,Wangenheim Matthias,Rau Thomas S.,Lenarz Thomas,Kral Andrej,Schurzig Daniel

Abstract

ObjectivesDespite the success of cochlear implant (CI) surgery for hearing restoration, reducing CI electrode insertion forces is an ongoing challenge with the goal to further reduce post-implantation hearing loss. While research in this field shows that both friction and quasistatic pressure forces occur during CI insertion, there is a lack of studies distinguishing between these origins. The present study was conducted to analyze the contribution of both force phenomena during automated CI insertion.MethodsFive MED-EL FLEX28 CI electrode arrays were inserted into both a regular and uncoiled version of the same average scala tympani (ST). Both ST models had a pressure release hole at the apical end, which was kept open or closed to quantify pressure forces. ST models were filled with different sodium dodecyl sulfate (SDS) lubricants (1, 5, and 10% SDS, water). The viscosity of lubricants was determined using a rheometer. Insertions were conducted with velocities ranging from v= 0.125 mm/s to 2.0 mm/s.ResultsViscosity of SDS lubricants at 20°C was 1.28, 1.96, and 2.51 mPas for 1, 5, and 10% SDS, respectively, which lies within the values reported for human perilymph. In the uncoiled ST model, forces remained within the noise floor (maximum: 0.049 × 10−3 N ± 1.5 × 10−3 N), indicating minimal contribution from quasistatic pressure. Conversely, forces using the regular, coiled ST model were at least an order of magnitude larger (minimum: Fmax = 28.95 × 10−3 N, v = 1 mm/s, 10% SDS), confirming that friction forces are the main contributor to total insertion forces. An N-way ANOVA revealed that both lubricant viscosity and insertion speed significantly reduce insertion forces (p < 0.001).ConclusionFor the first time, this study demonstrates that at realistic perilymph viscosities, quasistatic pressure forces minimally affect the total insertion force profile during insertion. Mixed friction is the main determinant, and significantly decreases with increaseing insertion speeds. This suggests that in clinical settings with similar ST geometries and surgical preparation, quasistatic pressure plays a subordinate role. Moreover, the findings indicate that managing the hydrodynamics of the cochlear environment, possibly through pre-surgical preparation or the use of specific lubricants, could effectively reduce insertion forces.

Publisher

Frontiers Media SA

Reference77 articles.

1. Neuronal development of hearing and language: cochlear implants and critical periods;Kral;Annu Rev Neurosci,2019

2. Cochlear implantation: concept, results outcomes and quality of life;Lenarz;Laryngo-Rhino-Otologie,2022

3. Cochlear implant – state of the art;Lenarz;Laryngo-Rhino-Otologie,2017

4. Intrakochleäre Plazierung der Cochlear-implant-Elektroden in soft surgery technique [Intracochlear placement of cochlear implant electrodes in soft surgery technique];Lehnhardt;HNO,1993

5. Suitable electrode choice for robotic-assisted Cochlear implant surgery: a systematic literature review of manual electrode insertion adverse events;Van De Heyning;Front Surg,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3